Updates

Strings-to-Rings Transition and Anti-parallel Dipole Alignment in Two-Dimensional Methanols

Danilo Roccatano's avatar

Ronen Zangi and Danilo Roccatano

Nano Lett. 2016, DOI: 10.1021/acs.nanolett.6b00460

TOCNewAbstract

Structural order emerging in the liquid state necessitates a critical degree of anisotropy of the molecules. For example, liquid crystals and Langmuir monolayers require rod/disc-shaped and long chain amphiphilic molecules, respectively, to break the isotropic symmetry of liquids. In this paper we present results from molecular dynamics simulations demonstrating that in two-dimensional liquids, a significantly smaller degree of anisotropy is sufficient to allow structural organization. In fact, the condensed phase of the smallest amphiphilic molecule, methanol, confined between two, or adsorbed on, graphene sheets forms a monolayer characterized by long chains of molecules. Intra-chain interactions are dominated by hydrogen bonds, whereas inter-chain interactions are dispersive. Upon a decrease in density toward a gas-like state, these strings are transformed into rings. The two-dimensional liquid phase of methanol undergoes another transition upon cooling; in this case, the order-disorder transition is characterized by…

View original post 15 more words

Categories: Updates

Tagged as:

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.