Science

Article in Sci. Rep. on a robust COVID-19 mortality prediction calculator based on Lymphocyte count, Urea, C-Reactive Protein, Age and Sex (LUCAS) with chest X-rays

Our paper “A robust COVID-19 mortality prediction calculator based on Lymphocyte count, Urea, C-Reactive Protein, Age and Sex (LUCAS) with chest X-rays” has been published in the journal Scientific Reports (with impact factor 5.0) and is available here. The work results from a collaboration between the University of Glasgow, University of Oxford, University of Brighton, University of Sheffield and the University of Lincoln.

A robust COVID-19 mortality prediction calculator based on Lymphocyte count, Urea, C-Reactive Protein, Age and Sex (LUCAS) with chest X-rays

S. Ray, A. Banerjee, A. Swift, J. W. Fanstone, M. Mamalakis, B. Vorselaars, C. Wilkie, J. Cole, L. S. Mackenzie, S. Week, Sci. Rep., 18220, 12 (2022)

Abstract: There have been numerous risk tools developed to enable triaging of SARS-CoV-2 positive patients with diverse levels of complexity. Here we presented a simplified risk-tool based on minimal parameters and chest X-ray (CXR) image data that predicts the survival of adult SARS-CoV-2 positive patients at hospital admission. We analysed the NCCID database of patient blood variables and CXR images from 19 hospitals across the UK using multivariable logistic regression. The initial dataset was non-randomly split between development and internal validation dataset with 1434 and 310 SARS-CoV-2 positive patients, respectively. External validation of the final model was conducted on 741 Accident and Emergency (A&E) admissions with suspected SARS-CoV-2 infection from a separate NHS Trust. The LUCAS mortality score included five strongest predictors (Lymphocyte count, Urea, C-reactive protein, Age, Sex), which are available at any point of care with rapid turnaround of results. Our simple multivariable logistic model showed high discrimination for fatal outcome with the area under the receiving operating characteristics curve (AUC-ROC) in development cohort 0.765 (95% confidence interval (CI): 0.738–0.790), in internal validation cohort 0.744 (CI: 0.673–0.808), and in external validation cohort 0.752 (CI: 0.713–0.787). The discriminatory power of LUCAS increased slightly when including the CXR image data. LUCAS can be used to obtain valid predictions of mortality in patients within 60 days of SARS-CoV-2 RT-PCR results into low, moderate, high, or very high risk of fatality.

Categories: Science

Tagged as:

1 reply »

Leave a Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.