Science

Article in J. Chem. Phys. on an algorithm allowing 10× faster calculations in field-theoretic simulations of polymers

Bart Vorselaars published the paper “Efficient Langevin and Monte Carlo sampling algorithms: The case of field-theoretic simulations” in the Journal of Chemical Physics (with impact factor 4.3) and is available here (and here for a preprint).

Efficient Langevin and Monte Carlo sampling algorithms: The case of field-theoretic simulations

B. Vorselaars, J. Chem. Phys., 114117, 158 (2023)

Efficiency per grid cell and iteration of the various Monte Carlo (MC), Brownian Dynamics (BD) and Langevin dynamics algorithms vs number of grid points M=m3

Abstract: We introduce Langevin sampling algorithms to field-theoretic simulations (FTSs) of polymers that, for the same accuracy, are ∼10× more efficient than a previously used Brownian dynamics algorithm that used predictor corrector for such simulations, over 10× more efficient than the smart Monte Carlo (SMC) algorithm, and typically over 1000× more efficient than a simple Monte Carlo (MC) algorithm. These algorithms are known as the Leimkuhler–Matthews (the BAOAB-limited) method and the BAOAB method. Furthermore, the FTS allows for an improved MC algorithm based on the Ornstein–Uhlenbeck process (OU MC), which is 2× more efficient than SMC. The system-size dependence of the efficiency for the sampling algorithms is presented, and it is shown that the aforementioned MC algorithms do not scale well with system sizes. Hence, for larger sizes, the efficiency difference between the Langevin and MC algorithms is even greater, although, for SMC and OU MC, the scaling is less unfavorable than for the simple MC.

Categories: Science

Tagged as:

1 reply »

Leave a Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.